8th Grade Earth Science




ALL

Page:  1  2  (Next)
  ALL

S

SCI-08.2

Under Development
Standards are larger groups of related benchmarks. So the Standard Score is a calculation of all the related benchmarks. So click on the benchmark name below each Standard to access the learning targets and proficiency scales for each Standard's related benchmarks.

Standard 2:

Science Inquiry

In the future this will contain narratives and other information about the Standard.

SCI-08.2.04

Science Targeted Benchmarks

Standard 2: Science Inquiry

SCI-08.2.04 Design and conduct a scientific investigation (e.g., making systematic observations, making accurate measurements, identifying and controlling variables)

Student Learning Targets:

Knowledge Targets

  • I can identify the steps of the scientific method.
  • I can record accurate measurements using the SI system.
  • I can identify independent and dependent variables.

Reasoning Targets

  • I can convert metric measurements to a smaller or larger unit.
  • I can form a hypothesis using if, then, because.

Skills (Performance) Targets

  • I can conduct a scientific investigation.
  • I can interpret charts and graphs.
  • I can create charts and graphs.

Product Targets

  • I can design a controlled scientific investigation.

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • design a controlled scientific investigation.
  • conduct a scientific investigation.
  • interpret charts and graphs.
  • convert metric measurements to a smaller or larger unit.
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • form a hypothesis using if, then, because.
  • identify the steps of the scientific method.
  • record accurate measurements using the SI system.
  • identify independent and dependent variables.
  • create charts and graphs.
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).

Resources

Websites

Vocabulary

SCI-MS.ESS1

BPSS-SCI logo

DCI (ESS1)

Earth's Place in the Universe

Performance Expectations

ESS1 helps students formulate an answer to questions such as:

  • What is Earth’s place in the universe?
  • What makes up our solar system?
  • How can the motion of Earth explain seasons and eclipses?
  • How do people figure out that the Earth and life on Earth have changed through time?

The ESS1 Disciplinary Core Idea is broken down into three sub-ideas: the universe and its stars, Earth and the solar system and the history of planet Earth . Students examine the Earth’s place in relation to the solar system, Milky Way Galaxy, and universe. There is a strong emphasis on a systems approach, using models of the solar system to explain astronomical and other observations of the cyclic patterns of eclipses, tides, and seasons. There is also a strong connection to engineering through the instruments and technologies that have allowed us to explore the objects in our solar system and obtain the data that support the theories that explain the formation and evolution of the universe . Students examine geoscience data in order to understand the processes and events in Earth’s history. 

In the ESS1 performance expectations, students are expected to demonstrate proficiency in developing and using models, analyzing data,and constructing explanations and designing solutions; and to use these practices to demonstrate understanding of the core ideas.

Calculation Method for DCI

Disciplinary Core Ideas are larger groups of related Performance Expectations. So the Disciplinary Core Idea Grade is a calculation of all the related Performance Expectations. So click on the Performance Expectation name below each Disciplinary Core Idea to access the learning targets and proficiency scales for each Disciplinary Core Idea's related Performance Expectations.

SCI-MS.ESS1.01

MS SCI Targeted Standards
(ESS1) Earth’s Place in the Universe

SCI-MS.ESS1.01 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

Student Learning Targets:

Knowledge Targets

  • I can define a day, month, and year according to the movements of the sun, moon, and earth.
  • I can identify the phases of the moon.
  • I can label a solar eclipse and lunar eclipse.
  • I can identify the two primary causes for Earth’s seasons.
  • I can define rotation and revolution.

Reasoning Targets

  • I can predict the phase of the moon based on its location relative to the sun and the earth.
  • I can explain why a solar eclipse does not occur every new moon.

Proficiency Scale

Score  

Description 

Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • predict the phase of the moon based on its location relative to the sun and the earth.
  • explain why a solar eclipse does not occur every new moon.
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
 2.0  

There are no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • define a day, month, and year according to the movements of the sun, moon, and earth.
  • identify the phases of the moon.
  • label a solar eclipse and lunar eclipse.
  • identify the two primary causes for Earth’s seasons.
  • define rotation and revolution.
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).

Resources

Websites

  • Add resources with links, youtube or PDF

Vocabulary

  • List

 

SCI-MS.ESS1.02

MS SCI Targeted Standards
(ESS1) Earth’s Place in the Universe

SCI-MS.ESS1.02 Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Student Learning Targets:

 Knowledge Targets

  • I can describe the shape of orbits.
  • I can describe the change in gravitational force as mass and distance change. 

Reasoning Targets

  • I can explain why planets revolve faster as they approach the sun. 

Skills (Performance) Targets

  • I can relate a planet’s period of revolution to its distance from the sun.

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  •   explain why planets revolve faster as they approach the sun.
  •   relate a planet’s period of revolution to its distance from the sun.
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

 The student can:

  •   describe the shape of orbits.
  •   describe the change in gravitational force as mass and distance change.  
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).

Resources

Websites

  • Add resources with links, youtube or PDF

Vocabulary

  • List

 

SCI-MS.ESS1.03

MS SCI Targeted Standards
(ESS1) Earth’s Place in the Universe

SCI-MS.ESS1.03 Analyze and interpret data to determine scale properties of objects in the solar system.

Student Learning Targets:

Knowledge Targets

  • I can identify the appropriate unit for measuring distances in space.
  • I can list celestial objects in the correct order by size.

Reasoning Targets

  • I can justify or defend my choice for the appropriate unit for measuring distances in space.

Proficiency Scale

Score    Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • justify or defend my choice for the appropriate unit for measuring distances in space. 
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • identify the appropriate unit for measuring distances in space.
  • list celestial objects in the correct order by size.
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).

Resources

Websites

  • Add resources with links, youtube or PDF

Vocabulary

  • List

 

SCI-MS.ESS1.04

MS SCI Targeted Standards
(ESS1) Earth’s Place in the Universe

SCI-MS.ESS1.04 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.

Student Learning Targets:

Knowledge Targets

  • I can provide reasons for the divisions of geologic time.
  • I can compare and contrast relative and absolute dating.

Skills (Performance) Targets

  • I can use index fossils to determine the relative age of a rock layer.
  • I can use the law of superposition to determine the relative age of a rock layer.

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • use index fossils to determine the relative age of a rock layer.
  • use the law of superposition to determine the relative age of a rock layer.
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • provide reasons for the divisions of geologic time.
  • compare and contrast relative and absolute dating.
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).
0.0 Even with help, the student demonstrates no understanding or skill. -

Resources

Websites

Vocabulary

content

SCI-MS.ESS2

BPSS-SCI logo

DCI (ESS2)

Earth's Systems

Performance Expectations

ESS2 help students formulate an answer to questions such as:

  • How do the materials in and on Earth’s crust change over time?
  • How does the movement of tectonic plates impact the surface of Earth?
  • How does water influence weather, circulate in the oceans, and shape Earth’s surface?
  • What factors interact and influence weather?
  • How have living organisms changed the Earth?
  • How have Earth’s changing conditions impacted living organisms?

The ESS2 Disciplinary Core Idea is broken down into five sub - ideas: Earth materials and systems, plate tectonics and large - scale system interactions, the roles of water in Earth’s surface processes , weather and climate, and biogeology. Students understand how Earth’s geo-systems operate by modeling the flow of energy and cycling of matter within and among different systems. Students investigate the controlling properties of important materials and construct explanations based on the analysis of real geoscience data. Of special importance in both topics are the ways that geoscience processes provide resources needed by society but also cause natural hazards that present risks to society; both involve technological challenges, for the identification and development of resources. Students develop understanding of the factors that control weather. A systems approach is also important here, examining the feedbacks between systems as energy from the sun is transferred between systems and circulates though the ocean and atmosphere.

In the ESS2 performance expectations, students are expected to demonstrate proficiency in developing and using models, planning and carrying out investigations , analyzing and interpreting data , and constructing explanations ; and to use these practices to demonstrate understanding of the core ideas.

Calculation Method for DCI

Disciplinary Core Ideas are larger groups of related Performance Expectations. So the Disciplinary Core Idea Grade is a calculation of all the related Performance Expectations. So click on the Performance Expectation name below each Disciplinary Core Idea to access the learning targets and proficiency scales for each Disciplinary Core Idea's related Performance Expectations.

Resources

SCI-MS.ESS2.01

MS SCI Targeted Standards
(ESS2) Earth's Systems

SCI-MS.ESS2.01 Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Student Learning Targets:

Knowledge Targets

  • I can recognize the five characteristics that define a mineral (i.e. solid, inorganic, naturally occurring, crystalline structure, pure substance/definite chemical composition). (Minerals)
  • I can describe the two major groups of minerals. (Minerals)
  • I can identify the three types of rock and how they form. (Rocks)
  • I can recognize the difference between weathering and erosion. (Rocks)

Skills (Performance) Targets

  • I can identify the properties of a mineral. (Minerals)
  • I can identify a mineral utilizing its properties. (Minerals)
  • I can use texture and composition to classify igneous rocks. (Rocks)
  • I can distinguish between foliated and nonfoliated metamorphic rocks. (Rocks)
  • I can distinguish between clastic, chemical, and organic sedimentary rocks. (Rocks)

Product Targets

  • I can diagram and explain the journey of rock as it moves through the rock cycle. (Rocks)

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • identify a mineral utilizing its properties. (Minerals)
  • diagram and explain the journey of rock as it moves through the rock cycle. (Rocks)
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • recognize the five characteristics that define a mineral (i.e. solid, inorganic, naturally occurring, crystalline structure, pure substance/definite chemical composition). (Minerals)
  • describe the two major groups of minerals. (Minerals)
  • identify the properties of a mineral. (Minerals)
  • identify the three types of rock and how they form. (Rocks)
  • use texture and composition to classify igneous rocks. (Rocks)
  • distinguish between foliated and nonfoliated metamorphic rock. (Rocks)
  • distinguish between clastic, chemical, and organic sedimentary rocks. (Rocks)
  • recognize the difference between weathering and erosion. (Rocks)
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).
0.0 Even with help, the student demonstrates no understanding or skill. -

Resources

Websites

Minerals

Rocks

Vocabulary

SCI-MS.ESS2.02

MS SCI Targeted Standards
(ESS2) Earth’s Systems

SCI-MS.ESS2.02 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Student Learning Targets:

Knowledge Targets

  • I can contrast uniformitarianism and catastrophism.

Reasoning Targets

  • I can explain how uniformitarianism and catastrophism led to the theory of actualism.

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • explain how uniformitarianism and catastrophism led to the theory of actualism.
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • contrast uniformitarianism and catastrophism.
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).
0.0 Even with help, the student demonstrates no understanding or skill. -

Resources

Websites

Vocabulary


Page:  1  2  (Next)
  ALL